[1] Kenneth H Rosen. Handbook of Discrete and Combinatorial Mathematics. CRC Press, 1999.

[2] W.Lenz. Beitrag zum Verstl ̈andnis der Magnetischen Erscheinungen in Festen Korpern. Phys.Z, 21:613, 1920.

[3] Ernst Ising. Beitrag zur Theorie des Ferromagnetismus. Zeitschrift furr Physik, 31(1):253–258, 1925.

[4] Thomas Ising, Reinhard Folk, Ralph Kenna, Bertrand Berche, and Yurij Holovatch. The fate of Ernst Ising and the fate of his model. arXiv preprint arXiv:1706.01764, 2017.

[5] David P Landau and Kurt Binder. A guide to Monte Carlo Simulations in Statistical Physics. Cambridge University Press, 2014.

[6] W.S. McCulloch and W.H. Pitts. A Logical Calculus of the Ideas Imminent in Nervous Activity.Bull. Math. Biophys.,(5), pages 115–133.

[7] Stephen Cole Kleene. Representation of Events in Nerve Nets and Finite Automata. Technical report, RAND Project, Santa Monica, 1951.

[8] W. A. Little. The Existence of Persistent States in the Brain. Mathematical Biosciences, 19(1-2):101–120, 1974.

[9] P Peretto. Collective Properties of Neural Networks: a Statistical Physics Approach. Biological Cybernetics, 50(1):51–62, 1984.

[10] Jan L van Hemmen. Spin-glass Models of a Neural Network. Physical Review A, 34(4):3435, 1986.

[11] Haim Sompolinsky. Statistical Mechanics of Neural Networks. Physics Today, 41(21):70–80,1988.

[12] David Sherrington. Neural Networks: the Spin Glass Approach. In North-Holland MathematicalLibrary, volume 51, pages 261–291. Elsevier, 1993.

[13] Yasaman Bahri, Jonathan Kadmon, Jeffrey Pennington, Sam S Schoenholz, Jascha Sohl-Dickstein, and Surya Ganguli. Statistical Mechanics of Deep Learning. Annual Review of Condensed Matter Physics, 2020.

[14] Gregory H Wannier. The Statistical Problem in Cooperative Phenomena. Reviews of Modern Physics, 17(1):50, 1945.

[15] Hendrik A Kramers and Gregory H Wannier. Statistics of the two-dimensional ferromagnet.Part I. Physical Review, 60(3):252, 1941.

[16] Hendrik A Kramers and Gregory H Wannier. Statistics of the two-dimensional ferromagnet.Part II. Physical Review, 60(3):263, 1941.

[17] C van der Malsburg. Frank Rosenblatt: principles of neurodynamics: perceptrons and the theory of brain mechanisms. In Brain theory, pages 245–248. Springer, 1986.

[18] J. Schmidhuber. Deep learning in Neural Networks: An overview. Neural networks, 61:85–117, 2015.

[19] Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’networks. Nature,393(6684):440, 1998.

[20] Donald Olding Hebb. The Organization of Behavior: a Neuropsychological Theory. J. Wiley;Chapman & Hall, 1949.

[21] Mehmet Suezen. Effective ergodicity in single-spin-flip dynamics. Physical Review E, 90(3):032141, 2014.

[22] Mehmet Suezen. Anomalous diffusion in convergence to effective ergodicity. arXiv preprint arXiv:1606.08693, 2016.

[23] Mehmet Suezen, Cornelius Weber, and Joan J Cerda. Spectral ergodicity in deep learning architectures via surrogate random matrices. arXiv preprint arXiv:1704.08303, 2017.

[24] Mehmet Suezen, JJ Cerda, and Cornelius Weber. Periodic Spectral Ergodicity: A Complexity Measure for Deep Neural Networks and Neural Architecture Search. arXiv preprint arXiv:1911.07831, 2019.